DNA and Genetics - Mark Scheme ## Q1. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|-----------|----------------------------------|-----------------| | (a) (i) | В; | | (1)
comp | | Question
Number | Answer | Additional Guidance | Mark | | (a) (ii) | В; | | (1)
comp | | Question
Number | Answer | Additional Guidance | Mark | | (a) (iii) | С; | | (1)
comp | | Question
Number | Answer | Additional Guidance | Mark | | (b) (i) | С; | | (1)
comp | | Question
Number | Answer | Additional Guidance | Mark | | (b) (ii) | D; | | (1)
comp | | Question
Number | Answer | Additional Guidance | Mark | | (c) | nucleus ; | ACCEPT chloroplast, mitochondria | (1)
clerical | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|--|---------| | (d) (i) | Advantage any one from: 1. prevent child dying late in pregnancy / eq 2. idea of less stress for parents / eq | | | | | parents can prepare for child { with / without } achondroplasia / eq idea of making an informed choice ; | ACCEPT may choose termination | | | | Disadvantage any one from: 5. risk of miscarriage of healthy child / eq 6. idea of more stress for parents / eq | 5. ACCEPT risk of spontaneous abortion | | | | 7. cost / eq 8. risk of false { negatives / positives } / eq ; | | (2) Exp | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|---------| | (d) (ii) | 1. genotype of parents shown ; | | | | | 2. alleles in the gametes shown ; | | | | | 3. possible genotypes of children shown AND corresponding phenotypes shown ; | | | | | 4. (probability =) 1/4 / 25% / 1 in 4 / 0.25 ; | 4. NOT a ratio e.g. 1:4
ACCEPT 1/3, 33(.3)%, 1 in 3, 0.3 this
assumes AA dies | | | | | assumes /w/ dies | (4) Exp | # Q2. | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(i) | A; | (1) | | Question
Number | Answer | Mark | |--------------------|--------|------| | (a)(ii) | 8; | (1) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|-----------------|---------------------|------| | (b) | Transcription ; | | (1) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|---|---|------| | (c) | 1. idea that there is a change in the
{DNA sequence / base sequence of a
gene / eq }; | 1. IGNORE mRNA | | | | change in amino acid / change in primary structure of { protein / enzyme }; | | | | | 3. reference to different R groups ; | | | | | 4. leading to different {type / position / eq} bonding; | 4. ACCEPT named bond e.g.
hydrogen, ionic, disulphide
NOT peptide | | | | 5. idea of change in {shape / properties} of the active site; | 5. ACCEPT enzyme is not made | | | | 6. idea of {phenylalanine / substrate/
eq} does not fit in the enzyme's
active site; | 6. ACCEPT no enzyme-substrate complex made | | | | - | | (4) | | Question
Number | Answer | Additional guidance | Mark | |--------------------|--|---------------------|------| | (d) | loss causes whole amino acid sequence (beyond mutation) to change / causes frame shift / eq; replacement only changes one {codon / amino acid / may not change the amino acid if third base / eq } eq; idea that the number of amino | | | | | acids remains the same with replacement; | | (2) | ## Q3. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---------------------------------|--------------------------------|------| | | idea that the (RNA) nucleotides | ACCEPT complementary to | | | | attach to this strand | RNA nucelotides, | | | | OR | codes for mRNA, | | | | idea of {nucleotide / base } | {part of the DNA / antisense } | | | | sequence that directs the | strand that the mRNA is built | | | | synthesis of { complementary | along, | | | | sequence / mRNA / eq}; | NOT DNA nucleotides, plural | | | | | strands | (1) | # Q4. | Question
Number | Acceptable Answer | Additional guidance | Mark | |--------------------|---|---------------------|------| | | A description that makes reference to the following: DNA {unzips / unwinds} and hydrogen bonds between complementary strands broken (1) | | | | | the {antisense / coding / template} strand used for mRNA synthesis (1) | | | | | RNA polymerase used to join RNA nucleotides (1) | | | | | complementary base pairing of A with U, not T (1) | | (4) | ## Q5. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---------|-------------------------|------| | (i) | Nucleus | Allow phonetic spelling | | | | | Do not allow Nuclease, | | | | | nucleolus, nuclears | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|-------------------------|---------------------|------| | (ii) | D ATGCGACTG / AUGCGACUG | | (1) | # Q6. | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--------------|--------------------------------------|--| | (a) | | Accept reasonable phonetic spellings | | | | Br - n comor | Not: | | | | A = adenine | adenosine | | | | C = cytosine | cysteine | | | | G = guanine | glycine | NAME AND ADDRESS OF THE PARTY O | | | T = thymine; | thiamine, thyosine, tyrosine | (1) | | | T = thymine; | thiamine, thyosine, tyrosine | (1 | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (b)(i) | idea that each amino acid is coded for by three
{nucleotides / bases}; | Accept in context of RNA | | | | credit quoted example / idea that 12
{nucleotides / bases} code for 4 amino acids; | AAT / AAC = leucine, CAG = valine, TTT = lysine | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (b)(ii) | idea that each {triplet is discrete / each base is only used once in a triplet / eq }; idea that AAT + AAC + CAG + TTT gives 4 (distinct) {triplets / codes}; | Accept a specific example eg the first T can only be used in code for first leucine Accept a description of how the code could be read if overlapping | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (b)(iii) | idea that more than one code can be used
for a {particular amino acid/ stop code}; | Accept more codes than are needed to code for all the amino acids (and stop code) | | | | 2. AAT and AAC code for leucine ; | | (2) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--------|---------------------|------| | (c) | В; | | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | *(d) | QWC - Spelling of technical terms must be correct
and the answer must be organised in a logical
sequence | QWC emphasis is logical sequence
NB The mps do not have to be given in
this order necessarily | | | | reference to mRNA with sequence UUA UUG
GUC AAA; | | | | | 2. idea that ribosome is involved ; | | | | | idea that each tRNA molecules is attached to
one (specific) amino acid; | Not tRNA carries amino acids | | | | credit example of tRNA anticodon with
specific amino acid | AAU /AAC = leucine, CAG = valine, UUU = lysine | | | | reference to anticodons on tRNA {bind / link
to / line up against / eq} codons on mRNA; | Ignore complementary | | | | 6. credit a specific example (from this DNA); | eg UUA codon and AAU anticodon | | | | idea of hydrogen bonds between bases (of
tRNA and mRNA); | Accept between codon and anticodon | | | | reference to formation of peptide {bonds /
links} between (adjacent) amino acids; | | (5) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (a) | triplet code / 3 bases to each code / eq; reference to adenine, thymine, guanine and cytosine; idea that each triplet of bases codes for one amino acid; idea that the code is not overlapping; idea that code is universal; idea that code is degenerate; | IGNORE codon, triple ACCEPT phonetic spelling | (2) | | Question
Number | Answer | Additional Guidance | Mark | |-----------------------|--|--|------| | * (b)
Q W C | (QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence) | QWC- Spelling of technical terms must
be correct - penalise 1 st error only - can
still reach Max 5 marks if 6 points given.
If context is transcription, Max 2
marks from Mp2, 5, 6, 7, 8. | | | | reference to semi-conservative
replication; | 1. ACCEPT clear description | | | | DNA (molecule / strands) {unwinds
/ separate / eq}; | 2. ACCEPT unzipped / hydrogen bonds
broken / eq | | | | (mono)nucleotides line up along
(both) strands / eq; | 3. NOT RNA OR one strand only described IGNORE bases line up | | | | reference to complementary pairing
between bases; | 4. ACCEPT description, NOT uracil / U | | | | reference to hydrogen bonds
formed (between bases); | 5. NOT between nucleotides in the same strand ACCEPT between (DNA) strands | | | | reference to formation of
phospho(di)ester bonds (between
adjacent mononucleotides); | | | | | 7. ref. to condensation reaction; | | | | | name of an enzyme involved in
DNA replication; | 8. e.g. (DNA) polymerase, (DNA) helicase, ligase | (5) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|-------------------|---------------------|------| | (i) | dominant (allele) | | | | | | | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|---|---|------| | (ii) | both parents heterozygous (1) correct offspring genotypes (from genetic diagram) (1) | ALLOW from gametes
in diagram
ALLOW ECF | | | | correct probability (1) | 0.25/ 25% / ½ ALLOW ECF | (3) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|---|------| | (iii) | Pre-implantation genetic diagnosis /
PGD / PIGD | ALLOW Pre-
implantation genetic
screening / PGS | (1) | | Question
Number | Answer | Additional Guidance | Mark | |--------------------|--|--|------| | (iv) | An explanation that makes reference to two of the following: | | | | | either | | | | | it may result in a choice of an abortion (1) | ALLOW can result in embryos being discarded | | | | it is unethical to cause the | ALLOW unethical to
destroy a potential | | | | death of a foetus (1) or(risk of) {incorrect result / false positive / false negative } (1) | human being | | | | healthy foetus could be aborted /
parents not prepared for child with
{genetic disease / achondroplasia} (1) | ALLOW can result
in healthy
embryos being
discarded | (2) |