DNA and Genetics - Mark Scheme

Q1.

Question Number	Answer	Additional Guidance	Mark
(a) (i)	В;		(1) comp
Question Number	Answer	Additional Guidance	Mark
(a) (ii)	В;		(1) comp
Question Number	Answer	Additional Guidance	Mark
(a) (iii)	С;		(1) comp
Question Number	Answer	Additional Guidance	Mark
(b) (i)	С;		(1) comp
Question Number	Answer	Additional Guidance	Mark
(b) (ii)	D;		(1) comp
Question Number	Answer	Additional Guidance	Mark
(c)	nucleus ;	ACCEPT chloroplast, mitochondria	(1) clerical

Question Number	Answer	Additional Guidance	Mark
(d) (i)	Advantage any one from: 1. prevent child dying late in pregnancy / eq 2. idea of less stress for parents / eq		
	 parents can prepare for child { with / without } achondroplasia / eq idea of making an informed choice ; 	ACCEPT may choose termination	
	Disadvantage any one from: 5. risk of miscarriage of healthy child / eq 6. idea of more stress for parents / eq	5. ACCEPT risk of spontaneous abortion	
	7. cost / eq 8. risk of false { negatives / positives } / eq ;		(2) Exp

Question Number	Answer	Additional Guidance	Mark
(d) (ii)	1. genotype of parents shown ;		
	2. alleles in the gametes shown ;		
	3. possible genotypes of children shown AND corresponding phenotypes shown ;		
	4. (probability =) 1/4 / 25% / 1 in 4 / 0.25 ;	4. NOT a ratio e.g. 1:4 ACCEPT 1/3, 33(.3)%, 1 in 3, 0.3 this assumes AA dies	
		assumes /w/ dies	(4) Exp

Q2.

Question Number	Answer	Mark
(a)(i)	A;	(1)

Question Number	Answer	Mark
(a)(ii)	8;	(1)

Question Number	Answer	Additional guidance	Mark
(b)	Transcription ;		(1)

Question Number	Answer	Additional guidance	Mark
(c)	1. idea that there is a change in the {DNA sequence / base sequence of a gene / eq };	1. IGNORE mRNA	
	 change in amino acid / change in primary structure of { protein / enzyme }; 		
	3. reference to different R groups ;		
	4. leading to different {type / position / eq} bonding;	4. ACCEPT named bond e.g. hydrogen, ionic, disulphide NOT peptide	
	5. idea of change in {shape / properties} of the active site;	5. ACCEPT enzyme is not made	
	6. idea of {phenylalanine / substrate/ eq} does not fit in the enzyme's active site;	6. ACCEPT no enzyme-substrate complex made	
	-		(4)

Question Number	Answer	Additional guidance	Mark
(d)	 loss causes whole amino acid sequence (beyond mutation) to change / causes frame shift / eq; replacement only changes one {codon / amino acid / may not change the amino acid if third base / eq } eq; idea that the number of amino 		
	acids remains the same with replacement;		(2)

Q3.

Question Number	Answer	Additional Guidance	Mark
	idea that the (RNA) nucleotides	ACCEPT complementary to	
	attach to this strand	RNA nucelotides,	
	OR	codes for mRNA,	
	idea of {nucleotide / base }	{part of the DNA / antisense }	
	sequence that directs the	strand that the mRNA is built	
	synthesis of { complementary	along,	
	sequence / mRNA / eq};	NOT DNA nucleotides, plural	
		strands	(1)

Q4.

Question Number	Acceptable Answer	Additional guidance	Mark
	A description that makes reference to the following: DNA {unzips / unwinds} and hydrogen bonds between complementary strands broken (1)		
	the {antisense / coding / template} strand used for mRNA synthesis (1)		
	RNA polymerase used to join RNA nucleotides (1)		
	complementary base pairing of A with U, not T (1)		(4)

Q5.

Question Number	Answer	Additional Guidance	Mark
(i)	Nucleus	Allow phonetic spelling	
		Do not allow Nuclease,	
		nucleolus, nuclears	(1)

Question Number	Answer	Additional Guidance	Mark
(ii)	D ATGCGACTG / AUGCGACUG		(1)

Q6.

Question Number	Answer	Additional Guidance	Mark
(a)		Accept reasonable phonetic spellings	
	Br - n comor	Not:	
	A = adenine	adenosine	
	C = cytosine	cysteine	
	G = guanine	glycine	NAME AND ADDRESS OF THE PARTY O
	T = thymine;	thiamine, thyosine, tyrosine	(1)
	T = thymine;	thiamine, thyosine, tyrosine	(1

Question Number	Answer	Additional Guidance	Mark
(b)(i)	 idea that each amino acid is coded for by three {nucleotides / bases}; 	Accept in context of RNA	
	 credit quoted example / idea that 12 {nucleotides / bases} code for 4 amino acids; 	AAT / AAC = leucine, CAG = valine, TTT = lysine	(2)

Question Number	Answer	Additional Guidance	Mark
(b)(ii)	 idea that each {triplet is discrete / each base is only used once in a triplet / eq }; idea that AAT + AAC + CAG + TTT gives 4 (distinct) {triplets / codes}; 	Accept a specific example eg the first T can only be used in code for first leucine Accept a description of how the code could be read if overlapping	(2)

Question Number	Answer	Additional Guidance	Mark
(b)(iii)	 idea that more than one code can be used for a {particular amino acid/ stop code}; 	Accept more codes than are needed to code for all the amino acids (and stop code)	
	2. AAT and AAC code for leucine ;		(2)

Question Number	Answer	Additional Guidance	Mark
(c)	В;		(1)

Question Number	Answer	Additional Guidance	Mark
*(d)	QWC - Spelling of technical terms must be correct and the answer must be organised in a logical sequence	QWC emphasis is logical sequence NB The mps do not have to be given in this order necessarily	
	 reference to mRNA with sequence UUA UUG GUC AAA; 		
	2. idea that ribosome is involved ;		
	idea that each tRNA molecules is attached to one (specific) amino acid;	Not tRNA carries amino acids	
	 credit example of tRNA anticodon with specific amino acid 	AAU /AAC = leucine, CAG = valine, UUU = lysine	
	reference to anticodons on tRNA {bind / link to / line up against / eq} codons on mRNA;	Ignore complementary	
	6. credit a specific example (from this DNA);	eg UUA codon and AAU anticodon	
	idea of hydrogen bonds between bases (of tRNA and mRNA);	Accept between codon and anticodon	
	 reference to formation of peptide {bonds / links} between (adjacent) amino acids; 		(5)

Question Number	Answer	Additional Guidance	Mark
(a)	 triplet code / 3 bases to each code / eq; reference to adenine, thymine, guanine and cytosine; idea that each triplet of bases codes for one amino acid; idea that the code is not overlapping; idea that code is universal; idea that code is degenerate; 	IGNORE codon, triple ACCEPT phonetic spelling	(2)

Question Number	Answer	Additional Guidance	Mark
* (b) Q W C	(QWC- Spelling of technical terms must be correct and the answer must be organised in a logical sequence)	QWC- Spelling of technical terms must be correct - penalise 1 st error only - can still reach Max 5 marks if 6 points given. If context is transcription, Max 2 marks from Mp2, 5, 6, 7, 8.	
	 reference to semi-conservative replication; 	1. ACCEPT clear description	
	 DNA (molecule / strands) {unwinds / separate / eq}; 	2. ACCEPT unzipped / hydrogen bonds broken / eq	
	 (mono)nucleotides line up along (both) strands / eq; 	3. NOT RNA OR one strand only described IGNORE bases line up	
	 reference to complementary pairing between bases; 	4. ACCEPT description, NOT uracil / U	
	reference to hydrogen bonds formed (between bases);	5. NOT between nucleotides in the same strand ACCEPT between (DNA) strands	
	 reference to formation of phospho(di)ester bonds (between adjacent mononucleotides); 		
	7. ref. to condensation reaction;		
	name of an enzyme involved in DNA replication;	8. e.g. (DNA) polymerase, (DNA) helicase, ligase	(5)

Question Number	Answer	Additional Guidance	Mark
(i)	dominant (allele)		
			(1)

Question Number	Answer	Additional Guidance	Mark
(ii)	 both parents heterozygous (1) correct offspring genotypes (from genetic diagram) (1) 	ALLOW from gametes in diagram ALLOW ECF	
	correct probability (1)	0.25/ 25% / ½ ALLOW ECF	(3)

Question Number	Answer	Additional Guidance	Mark
(iii)	Pre-implantation genetic diagnosis / PGD / PIGD	ALLOW Pre- implantation genetic screening / PGS	(1)

Question Number	Answer	Additional Guidance	Mark
(iv)	An explanation that makes reference to two of the following:		
	either		
	it may result in a choice of an abortion (1)	ALLOW can result in embryos being discarded	
	it is unethical to cause the	ALLOW unethical to destroy a potential	
	death of a foetus (1) or(risk of) {incorrect result / false positive / false negative } (1)	human being	
	healthy foetus could be aborted / parents not prepared for child with {genetic disease / achondroplasia} (1)	ALLOW can result in healthy embryos being discarded	(2)